Frosyth, Ponce, Computer Vision A Modern Approach.pdf

(51495 KB) Pobierz
CONTENTS
I
IMAGE FORMATION
1
3
3
3
4
6
8
9
9
11
11
12
12
13
14
16
17
18
19
19
21
21
22
23
24
v
1 RADIOMETRY — MEASURING LIGHT
1.1 Light in Space
1.1.1 Foreshortening
1.1.2 Solid Angle
1.1.3 Radiance
1.2 Light at Surfaces
1.2.1 Simplifying Assumptions
1.2.2 The Bidirectional Reflectance Distribution Function
1.3 Important Special Cases
1.3.1 Radiosity
1.3.2 Directional Hemispheric Reflectance
1.3.3 Lambertian Surfaces and Albedo
1.3.4 Specular Surfaces
1.3.5 The Lambertian + Specular Model
1.4 Quick Reference: Radiometric Terminology for Light
1.5 Quick Reference: Radiometric Properties of Surfaces
1.6 Quick Reference: Important Types of Surface
1.7 Notes
1.8 Assignments
2 SOURCES, SHADOWS AND SHADING
2.1 Radiometric Properties of Light Sources
2.2 Qualitative Radiometry
2.3 Sources and their Effects
2.3.1 Point Sources
vi
2.3.2 Line Sources
2.3.3 Area Sources
Local Shading Models
2.4.1 Local Shading Models for Point Sources
2.4.2 Area Sources and their Shadows
2.4.3 Ambient Illumination
Application: Photometric Stereo
2.5.1 Normal and Albedo from Many Views
2.5.2 Shape from Normals
Interreflections: Global Shading Models
2.6.1 An Interreflection Model
2.6.2 Solving for Radiosity
2.6.3 The qualitative effects of interreflections
Notes
Assignments
2.8.1 Exercises
2.8.2 Programming Assignments
26
27
28
28
31
31
33
36
37
40
42
43
45
47
50
50
51
53
53
53
54
55
58
58
61
63
63
68
73
73
77
77
80
83
86
89
2.4
2.5
2.6
2.7
2.8
3 COLOUR
3.1 The Physics of Colour
3.1.1 Radiometry for Coloured Lights: Spectral Quantities
3.1.2 The Colour of Surfaces
3.1.3 The Colour of Sources
3.2 Human Colour Perception
3.2.1 Colour Matching
3.2.2 Colour Receptors
3.3 Representing Colour
3.3.1 Linear Colour Spaces
3.3.2 Non-linear Colour Spaces
3.3.3 Spatial and Temporal Effects
3.4 Application: Finding Specularities
3.5 Surface Colour from Image Colour
3.5.1 Surface Colour Perception in People
3.5.2 Inferring Lightness
3.5.3 A Model for Image Colour
3.5.4 Surface Colour from Finite Dimensional Linear Models
3.6 Notes
vii
3.6.1 Trichromacy and Colour Spaces
3.6.2 Lightness and Colour Constancy
3.6.3 Colour in Recognition
Assignments
89
90
91
91
3.7
II
IMAGE MODELS
94
96
100
100
105
109
112
113
114
115
117
118
120
120
121
124
129
129
132
132
133
134
135
139
140
143
145
147
147
4 GEOMETRIC IMAGE FEATURES
4.1 Elements of Differential Geometry
4.1.1 Curves
4.1.2 Surfaces
Application: The shape of specularities
4.2 Contour Geometry
4.2.1 The Occluding Contour and the Image Contour
4.2.2 The Cusps and Inflections of the Image Contour
4.2.3 Koenderink’s Theorem
4.3 Notes
4.4 Assignments
5 ANALYTICAL IMAGE FEATURES
5.1 Elements of Analytical Euclidean Geometry
5.1.1 Coordinate Systems and Homogeneous Coordinates
5.1.2 Coordinate System Changes and Rigid Transformations
5.2 Geometric Camera Parameters
5.2.1 Intrinsic Parameters
5.2.2 Extrinsic Parameters
5.2.3 A Characterization of Perspective Projection Matrices
5.3 Calibration Methods
5.3.1 A Linear Approach to Camera Calibration
Technique: Linear Least Squares Methods
5.3.2 Taking Radial Distortion into Account
5.3.3 Using Straight Lines for Calibration
5.3.4 Analytical Photogrammetry
Technique: Non-Linear Least Squares Methods
5.4 Notes
5.5 Assignments
viii
6 AN INTRODUCTION TO PROBABILITY
6.1 Probability in Discrete Spaces
6.1.1 Probability: the P-function
6.1.2 Conditional Probability
6.1.3 Choosing P
6.2 Probability in Continuous Spaces
6.2.1 Event Structures for Continuous Spaces
6.2.2 Representing a P-function for the Real Line
6.2.3 Probability Densities
6.3 Random Variables
6.3.1 Conditional Probability and Independence
6.3.2 Expectations
6.3.3 Joint Distributions and Marginalization
6.4 Standard Distributions and Densities
6.4.1 The Normal Distribution
6.5 Probabilistic Inference
6.5.1 The Maximum Likelihood Principle
6.5.2 Priors, Posteriors and Bayes’ rule
6.5.3 Bayesian Inference
6.5.4 Open Issues
6.6 Discussion
150
151
151
153
153
159
159
160
161
161
162
163
165
165
167
167
168
170
170
177
178
III
EARLY VISION: ONE IMAGE
180
182
182
182
183
185
186
188
190
192
193
193
197
198
7 LINEAR FILTERS
7.1 Linear Filters and Convolution
7.1.1 Convolution
7.1.2 Example: Smoothing by Averaging
7.1.3 Example: Smoothing with a Gaussian
7.2 Shift invariant linear systems
7.2.1 Discrete Convolution
7.2.2 Continuous Convolution
7.2.3 Edge Effects in Discrete Convolutions
7.3 Spatial Frequency and Fourier Transforms
7.3.1 Fourier Transforms
7.4 Sampling and Aliasing
7.4.1 Sampling
Zgłoś jeśli naruszono regulamin