Successes and New Directions in Data Mining [Messeglia, Poncelet & Teisseire 2007-11-01](1).pdf

(8621 KB) Pobierz
Successes and New
Directions in Data Mining
Florent Masseglia
Project AxIS-INRIA, France
Pascal Poncelet
Ecole des Mines d'Ales, France
Maguelonne Teisseire
Universite Montpellier, France
InformatIon scIence reference
Hershey • New York
Acquisitions Editor:
Development Editor:
Editorial Assistants:
Senior Managing Editor:
Managing Editor:
Copy Editor:
Typesetter:
Cover Design:
Printed at:
Kristin Klinger
Kristin Roth
Jessica Thompson and Ross Miller
Jennifer Neidig
Sara Reed
April Schmidt
Jamie Snavely
Lisa Tosheff
Yurchak Printing Inc.
Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference
and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com
Copyright © 2008 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.
Library of Congress Cataloging-in-Publication Data
Successes and new directions in data mining / Florent Messeglia, Pascal Poncelet & Maguelonne Teisseire, editors.
p. cm.
Summary: “This book addresses existing solutions for data mining, with particular emphasis on potential real-world applications. It
captures defining research on topics such as fuzzy set theory, clustering algorithms, semi-supervised clustering, modeling and managing
data mining patterns, and sequence motif mining”--Provided by publisher.
Includes bibliographical references and index.
ISBN 978-1-59904-645-7 (hardcover) -- ISBN 978-1-59904-647-1 (ebook)
1. Data mining. I. Masseglia, Florent. II. Poncelet, Pascal. III. Teisseire, Maguelonne.
QA76.9.D343S6853 2007
005’74--dc22
2007023451
British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.
All work contributed to this book set is new, previously-unpublished material. The views expressed in this book are those of the authors, but
not necessarily of the publisher.
If a library purchased a print copy of this publication, please go to www.igi-global.com/reference/assets/IGR-eAccess-agreement.pdf for
information on activating the library's complimentary electronic access to this publication.
Table of Contents
Preface
.................................................................................................................................................. xi
Acknowledgment
............................................................................................................................... xvi
Chapter I
Why Fuzzy Set Theory is Useful in Data Mining /
Eyke Hüllermeier ...................................................
1
Chapter II
SeqPAM: A Sequence Clustering Algorithm for Web Personalization /
Pradeep Kumar, Raju S. Bapi, and P. Radha Krishna ..........................................................................
17
Chapter III
Using Mined Patterns for XML Query Answering /
Elena Baralis, Paolo Garza,
Elisa Quintarelli, and Letizia Tanca .....................................................................................................
39
Chapter IV
On the Usage of Structural Information in Constrained Semi-Supervised Clustering
of XML Domcuments /
Eduardo Bezerra, Geraldo Xexéo, and Marta Mattoso .................................
67
Chapter V
Modeling and Managing Heterogeneous Patterns: The PSYCHO Experience /
Anna Maddalena and Barbara Catania ...............................................................................................
87
Chapter VI
Deterministic Motif Mining in Protein Databases /
Pedro Gabriel Ferreira and Paulo Jorge Azevedo .............................................................................
116
Chapter VII
Data Mining and Knowledge Discovery in Metabolomics /
Christian Baumgartner and Armin Graber ........................................................................................
141
Chapter VIII
Handling Local Patterns in Collaborative Structuring /
Ingo Mierswa, Katharina Morik, and Michael Wurst.........................................................................
167
Chapter IX
Pattern Mining and Clustering on Image Databases /
Marinette Bouet, Pierre Gançarski, Marie-Aude Aufaure, and Omar Boussaïd ................................
187
Chapter X
Semantic Integration and Knowledge Discovery for Environmental Research /
Zhiyuan Chen, Aryya Gangopadhyay, George Karabatis, Michael McGuire, and Claire Welty .......
213
Chapter XI
Visualizing Multi Dimensional Data /
César García-Osorio and Colin Fyfe .................................................................................................
236
Chapter XII
Privacy Preserving Data Mining, Concepts, Techniques, and Evaluation Methodologies /
Igor Nai Fovino...................................................................................................................................
277
Chapter XIII
Mining Data-Streams /Hanady
Abdulsalam, David B. Skillicorn, and Pat Martin ............................
302
Compilation of References
.............................................................................................................. 325
About the Contributors
................................................................................................................... 361
Index
................................................................................................................................................... 367
Zgłoś jeśli naruszono regulamin